EA Engineering, Science, and Technology, Inc., PBC

Acute and Chronic Toxicity of PFAS-Free Firefighting Foams to Freshwater Organisms

Michelle Hudson¹, Neil Fuller¹, Sarah Lanasa¹, Michael K. Chanov¹, Chris Salice², Todd Anderson³ Jennifer Guelfo³ & Jamie G. Suski¹

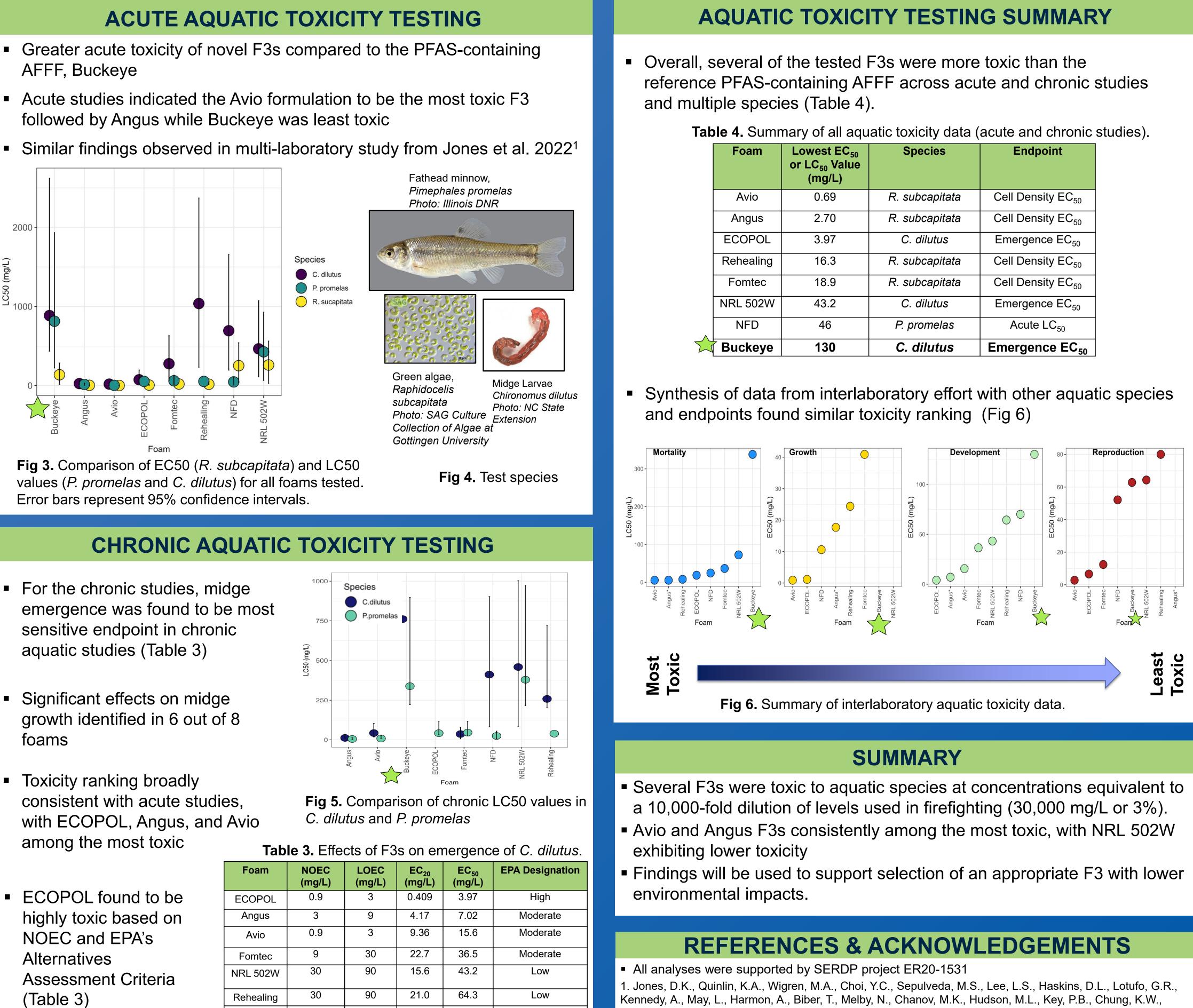
INTRODUCTION & OBJECTIVES

- PFAS has been widely incorporated into aqueous film-forming foams (AFFF) for firefighting purposes
- National Defense Authorization Act of 2022 required phase-out of fluorosurfactant foam by October 2024
- Novel fluorine-free foams (F3) require testing of firefighting performance and environmental toxicity
- This poster presents a synthesis of freshwater toxicity studies with a suite of 7 F3s and one reference PFAS-containing AFFF, Buckeye

Image From: Heiman Fire

Fig. 1 AFFF in action (top) and example F3 commercially available products (bottom)

METHODOLOGY


Table 1: Foams Tested

	Product Name	Formulation Type	Abbreviation
	National Foam AVIO F3 Green KHC 3%	Commercial PFAS-free Formulation	Avio
	Angus Fire ICAO-B JetFoam 3%	Commercial PFAS-free Formulation	Angus
\sim	Buckeye Platinum Plus C6 MILSPEC 3%	Reference C6 Formulation	Buckeye
	Bio-Ex ECOPOL A 3% FFF	Commercial PFAS-free Formulation	ECOPOL
	Fomtec ENVIRO 2–3% FFF	Commercial PFAS-free Formulation	Fomtec
	National Foam NFD 20–391 Formulation – 1 L	SERDP Developmental Formulation	NFD
	NRL 502 W Siloxane-based Formulation	SERDP Developmental Formulation	NRL 502W
	Solberg Re-healing Foam RF3 3%	Commercial PFAS-free Formulation	Rehealing

Table 2: Species and Test Methods

Species	Study Duration	Foams Assessed	Endpoints Measured	Guidance Method			
Acute Studies							
Algae (R. subcapitata)	96 h	Angus, Avio, Buckeye, ECOPOL, Fomtec, NFD, NRL 502W, Rehealing		EPA 1003.0			
Invertebrate (C. <i>dilutus</i>)	48 h	Angus, Avio, Buckeye, ECOPOL, Fomtec, NFD, NRL 502W, Rehealing	Survival	OECD 235			
Fish (<i>P. promelas</i>)	96 h ECOPOL, Fomtec, NFD.		Survival	OECD 203			
	Chronic Studies						
Invertebrate (C. dilutus)	Up to 60 d	Angus, Avio, Buckeye, ECOPOL, Fomtec, NFD, NRL 502W, Rehealing	Survival, Growth, Emergence	OECD 219			
Fish (<i>P. promelas</i>)	7 d	Angus, Avio, Buckeye, ECOPOL, Fomtec, NFD, NRL 502W, Rehealing	Survival & Growth	EPA 1000.0			

70.0

130

Low

Low

18.4

59.3

90

300

30

90

NFD

Buckeye

- ¹ EA Engineering, Science, and Technology, Inc., PBC, Hunt Valley, MD
- ² Towson University, Towson, MD
- ³ Texas Tech University, Lubbock, TX

Foam	Lowest EC ₅₀ or LC ₅₀ Value (mg/L)	Species	Endpoint
Avio	0.69	R. subcapitata	Cell Density EC ₅₀
Angus	2.70	R. subcapitata	Cell Density EC ₅₀
ECOPOL	3.97	C. dilutus	Emergence EC ₅₀
Rehealing	16.3	R. subcapitata	Cell Density EC ₅₀
Fomtec	18.9	R. subcapitata	Cell Density EC ₅₀
NRL 502W	43.2	C. dilutus	Emergence EC ₅₀
NFD	46	P. promelas	Acute LC ₅₀
Buckeye	130	C. dilutus	Emergence EC ₅₀

Kennedy, A., May, L., Harmon, A., Biber, T., Melby, N., Chanov, M.K., Hudson, M.L., Key, P.B., Chung, K.W., Moore, D.W., Suski, J.G., Wirth, E.F., and Hoverman, J.T. (2022). Acute Toxicity of Eight Aqueous Film-Forming Foams to 14 Aquatic Species. 56, (10) 6078-6090.